Une partie manquante de la matière de l’Univers trouvée grâce à l’instrument MUSE

  • Les galaxies échangent de la matière avec leur environnement extérieur grâce aux vents galactiques.
  • L’instrument MUSE du Very Large Telescope a permis pour la première fois de cartographier un vent galactique à l’origine d’échanges entre une galaxie et une nébuleuse.
  • Cette observation a permis de déceler une partie de la matière manquante de l’Univers

Les galaxies sont capables de recevoir et d’échanger de la matière avec leur environnement extérieur grâce aux vents galactiques résultant de l’explosion d’étoiles. Grâce à l’instrument MUSE1 du Very Large Telescope de l’ESO, une équipe de recherche internationale menée côté français par le CNRS et l’Université Claude Bernard Lyon 12, a cartographié un vent galactique pour la première fois. Cette observation unique, détaillée dans une étude publiée dans MNRAS le 16 septembre 2021, permet de comprendre où se situe une partie manquante de la matière de l’Univers et d’observer la formation d’une nébuleuse autour d’une galaxie.

Les galaxies, véritables îlots d’étoiles dans l’Univers, possèdent de la matière ordinaire, dite baryonique, constituée d’éléments du tableau périodique, et de la matière noire, de composition encore inconnue. Un des problèmes majeurs pour comprendre la formation des galaxies est qu’environ 80 % des baryons3 composant la matière normale de ces dernières sont manquants. D’après les modèles, ils seraient renvoyés en-dehors des galaxies dans l’espace inter-galactique, grâce aux vents galactique issus d’explosions d’étoiles.  

Grâce à l’instrument MUSE, une équipe internationale4 menée côté français par des chercheurs du CNRS et de l’Université Claude Bernard Lyon 1 a réussi à cartographier en détail un vent galactique à l’origine d’échanges entre une jeune galaxie en formation et une nébuleuse (autrement dit un nuage composé de gaz et de poussières interstellaires).

L’équipe a choisi d’observer la galaxie Gal1 en raison de la présence à proximité d’un quasar, véritable « phare » pour les scientifiques qui les a orientés vers la zone d’étude. Ils comptaient également observer une nébuleuse autour de cette galaxie. Cependant, le succès de cette observation était d’abord incertain, car la luminosité de la nébuleuse était inconnue.

Finalement, le positionnement parfait de la galaxie, du quasar ainsi que la découverte d’échanges de gaz dus aux vents galactique, a permis de dresser une cartographie unique. Cela a rendu possible la première observation de la formation d’une nébuleuse se trouvant simultanément en émission et en absorption de magnésium, une partie des baryons manquants de l’Univers, avec la galaxie Gal1.

Ce type de nébuleuse de matière normale est connu dans l’Univers proche, mais leur existence pour des galaxies jeunes en formation n’était que supposée.

Les scientifiques ont donc découvert une partie des baryons manquants de l’Univers permettant de confirmer que 80 à 90 % de la matière normale se situe en-dehors des galaxies. Cette observation va ainsi permettre de compléter les modèles d’évolution des galaxies.

Observation d’une zone de l’Univers grâce à MUSE
A gauche : Délimitation du quasar et de la galaxie étudiée ici, Gal1.
Au centre : Nébuleuse composée de Magnésium représentée avec une échelle de taille
A droite : superposition de la nébuleuse et de la galaxie Gal1.
© Johannes Zabl

Pour plus d’informations sur MUSE, retrouvez une vidéo et un reportage photo sur son installation.

Bibliographie

MusE GAs FLOw and Wind (MEGAFLOW) – VIII. Discovery of a Mg II emission halo probed by a quasar sightline. Johannes Zabl, Nicolas F. Bouché, Lutz Wisotzki, Joop Schaye, Floriane Leclercq, Thibault Garel, Martin Wendt, Ilane Schroetter, Sowgat Muzahid, Sebastiano Cantalupo, Thierry Contini, Roland Bacon, Jarle Brinchmann et Johan Richard. MNRAS, le 16 septembre 2021. https://doi.org/10.1093/mnras/stab2165

Contacts

Source CNRS INSU : lien vers l’actualité

X